LYMPHATIC SYSTEM PUMPING CHARACTERISTICS

HOW DOES THE BODY'S SEWER SYSTEM PUMP UPHILL?

James E. Moore Jr.

Department of Biomedical Engineering

Texas A&M University

jmoorejr@tamu.edu

Fluid and Protein Balance

Approximate daily totals:

Cardiac output: 8000 liters
Outflow from capillaries: 20 liters
Inflow to capillaries: 16 liters

Lymph flow: 4 liters

50% of blood proteins lost through capillaries

Return to venous system is one of main jobs

Also serves immune system transport role

Moves foreign invaders from tissues to lymph nodes

Immune cell trafficking

Monocytes to lymph nodes
One way trip; macrophages for ~1 month

Lymphocytes continuously circulate Distribute memory of antigens

Processing in lymph nodes

Importance in Disease Conditions

Lymphedema

Incurable

Affects cancer patients who have nodes removed Congenital (relatively rare)
Contracted through filaria parasite (elephantiasis)

Cancer

Lymphangiogenesis in tumor development Route for metastases of most dangerous forms

Wound healing

Arteries shut down Lymphatics keep pumping to drain

Cellular Signaling for Pumping

Stretch induces contraction, increases frequency

Flow inhibits contraction

Sensitivity to both depends on anatomical location Implication: Asynchronous network

Lymphatic endothelial cells

Endothelin-1 (ET-1) - Vasoconstrictor

Nitric Oxide (NO) - Vasodilator

Expression of both is τ dependent for blood EC

Overall Research Goals:

Construct network model of lymphatic circulation

Include regional variability in pumping function

Model disease states

Work thus far:

High-speed video "DPIV" in microlymphatics

Network model underway

Microlymphatic flow Results Time (sec) Peak shear stress (t) from 0 to 12 dynes/cm^2 Dixon et al., 2005, 2006, 2007

Lymph flow and vessel contraction

- Fluid fluctuates roughly 90 degrees out of phase with contraction cycle
- Particle Velocity: -4 to 9 mm/sec, mean: 0.9 mm/sec
- Diameters: 24 μm to 165 $\mu m,$ mean: 90 μm
- Contraction velocity: -0.4 mm/sec to 0.4 mm/sec, rms 40 μm/sec

Acknowledgments

Gerard Coté Rebecca Dahlin J. Brandon Dixon Anatoliy Gashev Harris Grainger Beth Placette Chris Quick Elaheh Rahbar Randy Stewart David Zawieja

NIH (NHLBI & NCI)

Thanks!